第四章 炔烃和二烯烃

内容提要

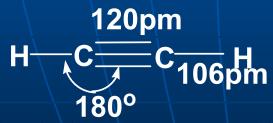
炔烃

二烯烃

- 1、炔烃的结构
- 2、炔烃的命名
- 3、炔烃的物理性质
- 4、炔烃的化学性质

- 1、二烯烃的分类和命名
- 2、共轭二烯烃的结构特点
- 3、共轭效应及共轭体系的类型
- 4、共轭二烯的反应

§ 1、炔烃


炔烃和二烯烃都是不饱和链烃,通式都是C_nH_{2n-2}但却是结构和性质都不相同的两类化合物。

一、炔烃的结构

以乙炔为例:

乙炔π 键的分子轨道及电子云分布

两个互相垂直的π 键 电子云连成一个圆柱形 电子云结合较好

叁键键能836 kj / mol < 3 x 346 kJ / mol(3个C-C σ键)

二、炔烃的命名

与烯烃的命名相似,只需将"烯"字改为"炔"字

例如

$$CH_3$$
 CH_3
 CH_3 $C = C = C + CH_3$
 CH_3

3-甲基-1-丁炔

2,2,5-三甲基-3-己炔

当分子中同时含有双键和叁键时: 选取含有双键和叁键的碳链为主链; 碳链编号要使烯、炔的位次之和最小; 当有选择时,优先使双键的位次最小。 书写时先列出烯,后列出炔。

CH₃—CH—C—C=CH CH₃ 3-甲基-3-戊烯-1-炔

炔基的命名:

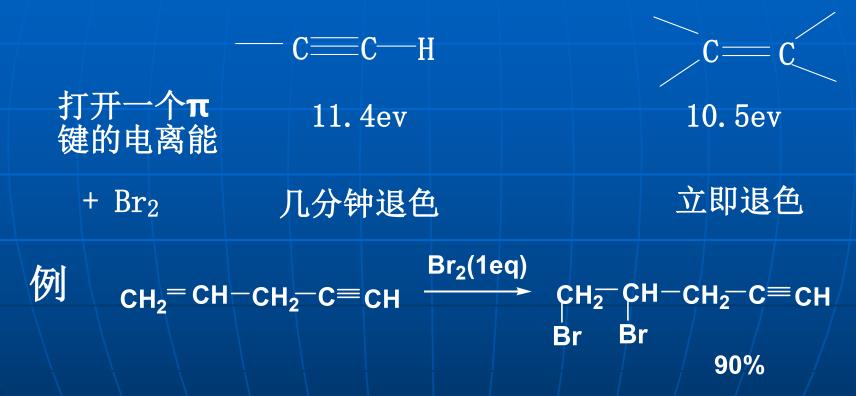
三、乙炔的制备

1.电石法(纯,但耗电)

CaO + 3C
$$\xrightarrow{2200 \text{ °C}}$$
 CaC₂ + CO
CaC₂ + H₂O $\xrightarrow{}$ HC \equiv CH + Ca(OH)₂

2.甲烷法

液炔加热或撞击易爆炸,常溶于丙酮,吸附于多孔物质, 装入加压钢瓶储存。


四、炔烃的物理性质

mp、bp、d 都比同碳的烷或烯高 线性分子短小细长,互相靠得近,范德华力较强 弱极性素质促胀烷、kao烯强。(S.Rappe S.D.3 电负性不同)。

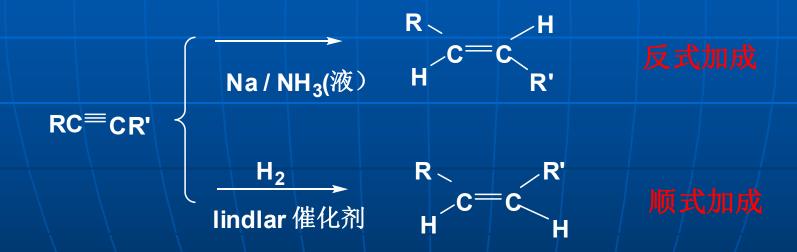
与烯既相似,又有不同:

相同点: 都能打开一个□键,发生亲电加成反应 圆柱形□电子云较稳定,反应活性不如烯 差异:

SP杂化,炔氢酸性 不同点:

業核加成

SP²杂化,无酸性


无亲核加成

(一)、与烯相似的反应

1.加成反应

(1).加H₂

$$HC = CH$$
 $\xrightarrow{H_2/Pt}$ $CH_2 = CH_2$ $\xrightarrow{H_2/Pt}$ $CH_3 = CH_3$ 控制加氢,只加一分子 H_2

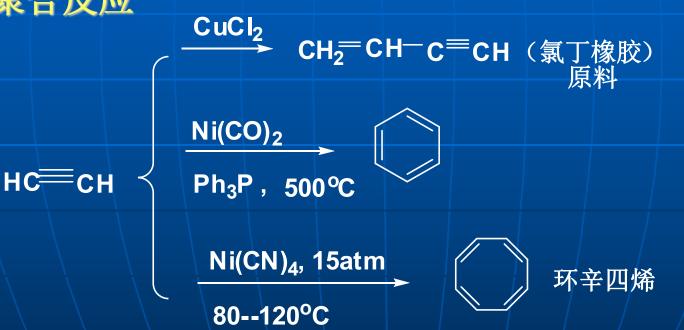
lindlar 催化剂 = Pd/BaSO₄ + 喹啉 完整版,请访问www.kaoyancas.net 科夷科院曼德城O₃专注子协科大、中科院考研

(3).加卤化氢

$$R - C = CH \xrightarrow{HX} R - C = CH_2 \xrightarrow{HX} R - C - CH_3$$

不对称炔

一段写代加成


(4).加水

$$HC$$
 $=$ CH $+$ H_2O $\xrightarrow{HgSO_4}$ $=$ CH_2 $=$ CH $=$ $=$ CH $=$

2. 氧化反应

$$R-C \equiv C-R'$$
 $\xrightarrow{O_3}$ $\xrightarrow{H_2O}$ \xrightarrow{RCOOH} + R'COOH
 $R-C \equiv CH$ $\xrightarrow{KMnO_4}$ \xrightarrow{K} \xrightarrow{RCOOK} + $\xrightarrow{MnO_2}$ + $\xrightarrow{K_2CO_3}$ + $\xrightarrow{H_2O}$ \xrightarrow{RCOOK} $\xrightarrow{RCOO$

3. 聚合反应

与烯烃不同的反应:

1.亲核加成

(1).加HCN

类似的反应还有:

(2) 加醇

$$HC = CH + C_2H_5OH \longrightarrow CH_2 = CH \longrightarrow \frac{\Re \ominus}{CH_2} \longrightarrow (CH_2 - CH)_n$$

 OC_2H_5 塑料 OC_2H_5

(3).加酸

2. 炔氢的酸性反应

一般讲酸性---相对于H2O, 炔氢的酸性---相对于烯、烷

- (1).酸碱理论
 - A、Lowry---Bronsted 酸碱定义能释放出H+的分子或离子----酸能輸合制的的分泌或离环科院考研网碳注于中科大、中科院考研

例如:

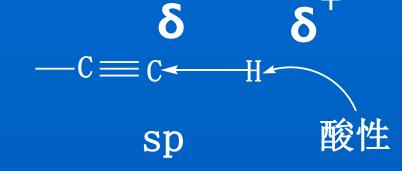
一些代表性化合物的PKa值:

化合物	PKa值	化合物	PKa值
H ₂ CO ₃	6.5	NH ₃	34
Ph-OH	9.6	CH ₃ -CH ₃	42
CH ₃ CH ₂ OH	17	H ₂ O	15.6
CH3 CB L请访问www. 20 yancas.net 科大科院考研网,专注于中科大、中科院考研			

B、Lewis酸碱理论(含义更广)

凡能接受外来电子对的(分子、离子或基团)----酸 凡能提供电子对的(分子、离子或基团)-----碱

H₂SO₄ 、HC1 、CH₃COOH等 含质子的酸:: Na⁺、K⁺、Ca⁺²、Fe⁺³等 阳离子: Lewis酸 BF_3 , $A1Cl_3$, $SnCl_4$, 具有能接受 ZnCl₂、FeCl₃等 电子对的空轨道: OH 、 CH₃O 、 C₁ 等 阴离子: 含未共用电子对 H_2O 、ROH 、 R_2O 、 RNH_2 等


Lewis 碱

的中性分子:

具有π电子的 不饱和烧:

(2). 炔氢的酸性:

能被碱金属置换

$$HC = CH + Na \longrightarrow HC = CNa \longrightarrow NaC = CNa + H_2$$

酸性的强弱次序

$$H_2O > CH \equiv CH > NH_3 > CH_2=CH_2 > CH_3-CH_3$$

PKa 15.6 25 34 36 42

$$HC \equiv CNa + H_2O \longrightarrow CH \equiv CH + NaOH$$

完整份,请访GHw.taoyaNaNH2科大科院考研网C专注于G科及、中科院考研

炔化物的用途:

A、制备长链炔烃

HC
$$\equiv \overline{CNa} + R \xrightarrow{\delta^+} \overline{Br} \longrightarrow CH \equiv C - R + NaBr$$

R 为1° 才行, 2°, 3°会消除

B、鉴定端炔

$$CH \equiv C - R + 2 \left[Ag(NH_3)_2 \right]^+ \longrightarrow AgC \equiv C - R \downarrow$$

§ 2、二烯烃

一、分类和命名

1、分类

结构单元

实例

累积二烯

$$C = C$$

 CH2=C=CH2

 数量少,用途不多

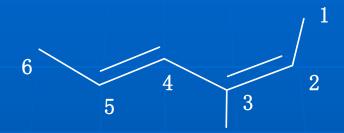
共轭二烯

CH₂=CH-CH=CH₂ 最重要

隔离二烯

$$C = CH(CH_2)_n CH = C$$

 CH_2 CH_2 CH_3 CH_2 CH_2


n "R 1

性质与单烯相似

2、命名

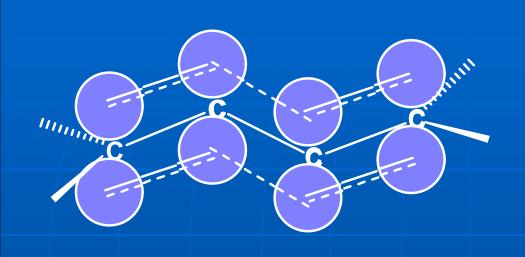
系统命名法与烯烃相似,双键的几何异构用Z、E表示

例

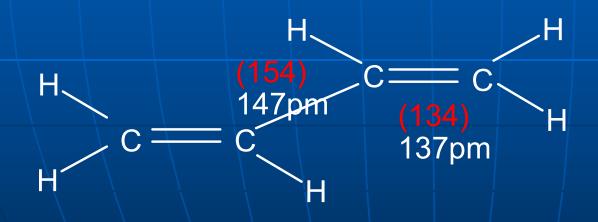
(2**Z,4E)**-3-甲基-2,4-己二烯

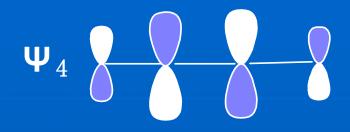
共轭二烯两个双键相对于中间单键的取向常用"S-反"或 "S-顺"表示

例



S-反-1,3-丁二烯




S-顺-1,3-丁二烯

二、共轭二烯的结构特点(以丁二烯为例)

4C, 6H 共10个原子共平面 每个C原子上各剩一个P轨道 垂直于分子平面,互相平行 侧面交叠成一个大π 键

$$---- E_4$$
= α - 1.618β

$$----- E_3 = α - 0.618$$
β

$$\Psi_2$$

$$+$$
 $E_2 = \alpha + 0.618 \beta$

$$\Psi_1$$

$$+$$
 $E_1 = \alpha + 1.618 \beta$

1, 3毫万二烯的分子轨道图和分子轨道能级大、中科院考证

4个P电子填满Ψ₁和Ψ₂两个成键轨道,电子云的分布情况是Ψ₁和Ψ₂两个成键轨道的叠加结果,即C₁与C₂;C₃与C₄之间稍弱于标准双键,而C₂与C₃之间则有部分双键性质,键长平均化。P电子可以在4个C原子的范围内运动,电子的离域使体系能量降低。

- 1,3-丁二烯中4个P电子的总能量:
- = 2 $(\alpha + 1.618\beta) + 2 (\alpha + 0.618\beta)$
- $= 4\alpha + 4.472\beta$
 - 2个孤立 二烯中4个P电子的总能量=4α+ 4β, 因此, 共轭二烯的稳定化能为 0.472β

(β为键积分,负值)

氢化热数据证明共轭二烯比孤立二烯稳定:

氢化热 $CH_3 - CH_2 - CH = CH_2$ 126.8 kJ/mo1

 $CH_2 = CH - CH = CH_2 = 229.4 \text{ kJ/mol}$

2 x 126.8 kJ/mo1

三、共轭效应

由于生成大m键,电子云密度重新分配,键长平均化,分子内能降低,稳定性增加的效应—称为共轭效应特点。

1、共平面性

分子共平面,垂直于分子平面的P轨道才能平行 而有效交叠。

2、键长平均化

共轭链越长,单双键的键长越接近;环状共轭体系(如苯),键长完全平均化(等长)。

3、折射率较高

电子云连成片,流动性大,更易极化。

$$c-c-c-c-c = c = c = 1.4282$$
 $c-c-c-c-c-c = n^{20} = 1.4500$

4、体系能量低(略)

四、共轭体系的类型

类型

实例

表示式

1、π --π 共轭

$$c = c - c = c$$

 π_4^4

2、P--π 共轭

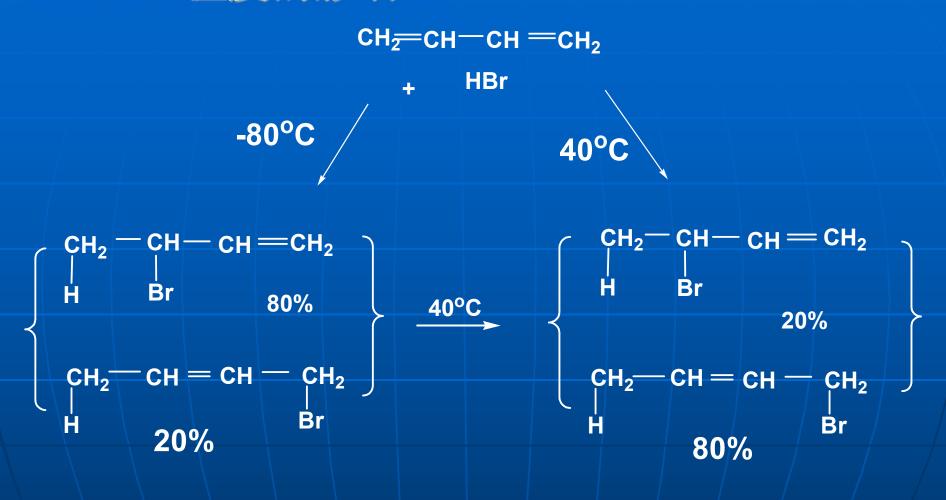
$$\stackrel{+}{c}$$
— c == c

$$\pi_3^2$$


$$\pi_3^3$$

$$RO - C = C$$

$$\pi_3^4$$


五、共轭二烯的反应

1、亲电加成反应

产物的比例取决于反应条件

(1)、温度的影响:

低温下1,2 加成速率较快

1,4 加成产物 较稳定,故

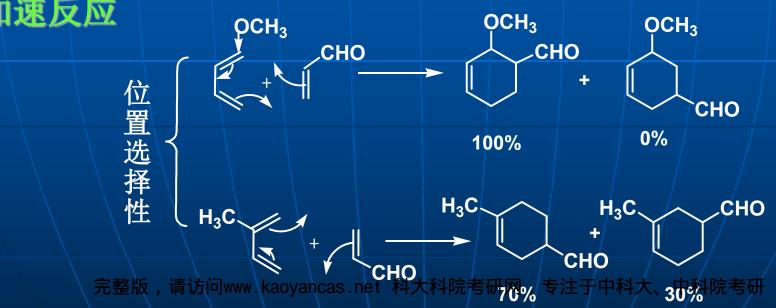
1,2 加威产物占优 kaoyancas.net 科大科院考研网升温时1,4 加成产物占优

(2) 溶剂的影响

极性强,有利于生成1,4 加成产物

(3)、底物结构的影响

$$\begin{array}{c} & \text{Br} & \text{Br} \\ \text{CH}_2 - \text{C} - \text{CH} = \text{CH}_2 \\ \text{CH}_3 \end{array} & \begin{array}{c} \text{Br}_2 \\ \text{CH}_3 \end{array} & \begin{array}{c} \text{CH}_2 - \text{C} - \text{CH} = \text{CH}_2 \\ \text{CH}_3 \end{array} & \begin{array}{c} \text{2} \text{A} \text{7} \text{\cap} - \pi & \text{超共轭} \\ \text{CH}_2 - \text{C} - \text{CH} - \text{CH}_2 \\ \text{Br} & \text{CH}_3 \end{array} & \begin{array}{c} \text{A} \text{7} \text{\cap} - \pi & \text{B} \text{H} \text{π} \\ \text{Er} \end{array} & \begin{array}{c} \text{Er} \text{ A} \end{array} & \begin{array}{c} \text{Er} \text{A} \text{A} \end{array} & \begin{array}{c} \text{Er} \text{A} \end{array} & \begin{array}{c} \text{Er} \text{A} \text{Er} \text{A} \end{array} & \begin{array}{c$$


2、Diels—Alder 又巡

环状过渡态 协同反应

S-顺 共轭二烯才能反应 双烯双键上有给电子基、亲双烯体双键上有吸电子基---加速反应

立体选择性--顺式加成:

合成环状化合物非常有用

Thanks for Your Attentions